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Abstract 

A computer simulation study, using Finnis-Sinclair-type N-body potentials, of the amorphization of crystalline 
CuTi2 by electron bombardment was carried out. It was shown that the thermodynamic properties of volume 
and total energy cannot be generally used as criteria for amorphization. Instead it was found that, at the 
completion of amorphization, the magnitude and distribution of the atomic level shear stress was identical to 
that of the glassy state formed by a quench from the liquid. It is suggested that the atomic level shear stress 
provides a universal criterion for the attainment of the amorphous state, through glass transition, alloying, and 
solid state amorphization. 

1. Introduction 

As applications for metallic glasses have rapidly in- 
creased, intensive and systematic studies of amorphi- 
zation have escalated as well. Beyond the classical 
means of creating metallic glasses, i.e. rapid quenching 
of alloy melts, electrodeposition, and vapor and sputter 
deposition, newer solid state amorphization techniques 
have been developed: mechanical alloying, interdiffusion 
reactions, and particle irradiation, to name a few. These 
new developments have led to more fundamental ques- 
tions directed toward understanding the crystal-to-amor- 
phous (CA) transformation. 

In this paper, we will concentrate on amorphization 
through particle irradiation, specifically via electron 
bombardment. When an intermetallic compound is bom- 
barded by energetic particles such as electrons, the 
crystal structure absorbs damage in the form of point 
defects or point defect complexes. This accumulation 
of damage can eventually lead to amorphization. The 
possibility of amorphization depends on the composition 
and temperature. The criteria and mechanism for amor- 
phization have been the subject of several recent studies 
[1, 2]. It has been suggested that the CA transformation 
is akin to melting, and the increase in volume and 
energy leads to an instability in the crystal which drives 
amorphization [3]. The purpose of this paper is to show 
that the atomic level stresses are much better parameters 
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for describing amorphization than volume and energy, 
and the use of these parameters leads to a much more 
fundamental understanding of the transition. 

Computer simulations of defect-induced amorphi- 
zation have allowed for more detailed studies of the 
amorphization process. These simulation techniques 
allow for the study of the effect of specific defect types, 
i.e. Frenkel pairs or antisite defects, on the propensity 
for amorphization. In radiation-induced amorphization 
experiments, it is impossible to separate Frenkel defects 
and antisite defects experimentally, so it becomes dif- 
ficult to determine the mechanism of amorphization. 
Although few pure metals have been amorphized, the 
first simulations were carried out on point defects in 
monoatomic systems [4]. Recently, with the development 
of the embedded atom method and N-body potentials, 
much work has been done on binary compounds, es- 
pecially those in the Cu-Ti system [2, 5-7]. Although 
these studies have closely examined the CA transition, 
none has asked the basic question of how to describe 
the amorphous solid. Before the transition can be 
understood, there has to be a greater understanding 
of the glass. 

Several recent studies [8-11] have shown that the 
atomic level stress tensor provides a good description 
of the kinetics and structure of liquids and glasses, and 
has been used to study the transition from liquid to 
glass. In this study, we use molecular dynamics (MD) 
to examine the distribution of the atomic level shear 
stresses to determine the point at which the crystal 
transforms to a glass. We propose that, for a particular 
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system, the shear stress distribution, which can be 
parameterized using the mean shear stress and the 
fourth-order cumulant, is independent of how the glass 
was formed. Therefore, these values should be used 
in determining when the glass is present, and are thus 
the parameters which indicate the transition from crystal 
to glass. We chose the Cu-Ti system to study since 
much simulation work [2, 5, 6] has been previously 
done, and a large amount of experimental data were 
at our disposal [12-16]. The results of our study show 
that the atomic level shear stress distribution can be 
used as a criterion for the completion of the CA 
transition, and that the dependence of the volume and 
total energy on the history of the glass severely restricts 
their application to the understanding of the transition. 

Section 2.1 introduces and defines the atomic stress 
tensor. This is the important parameter in describing 
the glass, and is used to characterize the local atomic 
structure. In Section 2.2, we introduce our interatomic 
interaction model which is an empirical many-body 
potential. The application of many-body potentials has 
grown significantly in recent years as a result of the 
increase in computing power and their success in de- 
scribing many materials properties. The interest in these 
methods [17-20], for the most part, stems from their 
ability to describe the effect of large changes in atomic 
coordination, as well as being unconstrained by the 
Cauchy relations which are the downfall of standard 
pair potentials. We chose to use N-body potentials of 
the Finnis-Sinclair type because of the availability of 
pure metal potentials. In this section we also discuss 
the simulation procedure and method. In Section 3 we 
describe results from two types of atomic position 
analyses. A projection of the atoms in the MD box 
onto a (001) plane is used to help assess crystallinity. 

This analysis is complemented by another investi- 
gation using pair distribution functions at different 
defect concentrations. These methods are used as a 
check for crystallinity since they are by themselves 
inadequate in determining when amorphization occurs. 
Sections 4 and 5 contain the important results of this 
study. In Section 4, we investigate the premise that 
the thermodynamic properties of volume and energy 
can be used as criteria for determining amorphization. 
We present our data showing that this premise is not 
valid for this system. We show in Section 5 that the 
atomic level shear stress provides a reliable parameter 
for describing amorphization. Our data indicate that 
the average shear stress and the fourth-order cumulant 
provide the important criteria for amorphization. We 
summarize our results in Section 6. 

2. Basic building blocks 

2.1. Atomic level stresses 
Although stress is usually defined in a macroscopic 

continuum, it is possible to extend the concept to an 
atomistic level. The stress can be used to characterize 
the local atomic structure of any system, for example 
the local structure of liquids, glasses and crystalline 
defects [10], as long as the stress can be attributed to 
every individual atom. In this way, the description of 
local atomic structure is converted from the usual scalar 
quantity, local density, to a tensorial quantity, the stress 
tensor [21]. The atomic level stress associated with an 
atom i is defined such that the total stress is 

1 ~. lli~r~,~ p (1) 

where ~r~ ~ is the a13 cartesian component of the stress 
tensor associated with atom i, f~i is the volume of the 
Wigner-Seitz (Voronoi) cell of atom i, and V is the 
total volume of the system [21]. General expressions 
for the atomic level stresses can be derived using the 
method of uniform strains, provided that the energy 
of the system can be written as a sum of the energies 
associated with individual atoms. When the total po- 
tential energy of the system is only a function of the 
separations between the atoms, which is the case for 
the many-body potentials used here, the change in 
energy due to a small applied macroscopic strain e,~ 
is [22] 

1 3 N 

aXE= ~ E E fage~ (2) 
a, /3  = 1 i , j=l  

where rij is the separation of atoms i and j, f,j is the 
force on atom i due to atom j, and a, 13 are the cartesian 
components. In the continuum model, this small change 
in energy can be written as 

3 

zXE= ~ g~,~e.~ (3) 
~e,~= 1 

where cr~ ~ is the microscopic stress associated with 
atom i. Using these two equations, the atomic level 
stresses can be written as 

1 
o7~= -~ ( ~ f~.r~-Miv'~v~) (4) 

where the second term in the parentheses represents 
the finite temperature correction, and vi and Mi are 
the velocity and mass respectively of this atom. It has 
been shown that the average stress in the MD box is 
equal to the macroscopic stress [10]. It should be noted 
that this does not mean that there are stresses present 
in the system at a macroscopic scale; rather, it is possible 
for the system to support local stresses as long as the 
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average over the box goes to zero or the fluctuations 
in the stresses are dynamic. In crystals static fluctuations 
may be present only around defects [23]. 

In liquids and glasses, large fluctuating atomic level 
stresses exist, and they have been used in elucidating 
various properties of metallic glasses [8, 11, 24]. The 
most important characteristics of the atomic level stress 
tensor can be represented by two rotationally invariant 
parameters, 

p=Tr(a) /3  (5) 

, =  - + 

where o-, o-2 and o'3 are the principal stresses. The 
first is the hydrostatic stress which is related to the 
local volume fluctuations, and the second parameter 
is the average (von Mises) shear stress which describes 
the distortion of the atomic environment away from 
spherical symmetry. Note that the yon Mises shear 
stress is the r.m.s, of the shear components of the stress 
tensor, so (1-)~ (~)=0.  From this point, all references 
to the shear stress will be taken to mean the yon Mises 
shear unless noted otherwise. Since the shear stresses 
that are being characterized are the square root of the 
second moment, which is equal to the second-order 
cumulant since (1-) = 0, the fourth-order cumulant (1-4)e 
is used to characterize the shape of the distribution 
of the atomic shear stresses. The fourth-order cumulant 
is defined as 

(Pr4)C = (7  4 ) --3(1-2) 2 - 4(?) (~ "3 ) + 12(?)z(r 2) - 6 ( 1 - )  4 

( 6 )  

Since (~-)=0, eqn. (6) can be reduced to 

(T4)C = (T 4) -- 3(~r2) 2 (7) 

2.2. The model  and methodology 
As stated earlier, this study is an examination of a 

defective Cu-Ti alloy: more specifically, CuTi2 (Fig. 1). 

I COPPER ATOM 

Q TITANIUM ATOM 

Fig. 1. Crystal  s t ruc tu re  of  CuTiz. 

This system is a body-centered tetragonal structure 
based on MoSi2 with six atoms per unit cell, and the 
motif consists of linear chains of CuTi2 aligned parallel 
to the c axis. An MD simulation was carried out using 
1152 atoms in an 8 x  8 x 3  configuration of CuTi2 unit 
cells in a constant stress-number--enthalpy MD mode 
with periodic boundary conditions [25, 26]. This sim- 
ulation method allows for changes in the shape of the 
MD box. The atoms in this simulation interact through 
N-body potentials of the Finnis-Sinclair type [17]. 

Using the Finnis-Sinclair formalism, the total energy 
of a system of N atoms can be written as 

1 N N 
E =  2 Z V i j ( R i j ) -  E P i  1/2 (8) 

i~ j~ l  i~ l  

where V~j is a pair potential which describes the in- 
teraction between atoms i andj separated by the distance 
Ro, and Pi, which represents the local electronic density 
in the volume associated with atom i, is written as 
pi=Zjq~,.j(Rij) where CI)ij is also a pair potential. The 
second term is the many-body part of the energy and 
its square root functional can be justified in the frame- 
work of a second moment approximation to tight-binding 
theory [27]. ¢ij can be interpreted as the square of 
the hopping integral and thus can be thought of as an 
effective coordination [28]. This interpretation is backed 
by Robertson and Heine's [29] recent results from ab 
initio calculations which have demonstrated that the 
energy scales as the square root of the coordination. 

In expanding these potentials to binary alloys [30], 
the ij of the pair potentials V and q~ refer to the 
chemical species of atoms i and j. Therefore, for binary 
systems there are six potentials: V~,, VBB , VAB , (/)AA, 
q~B and ~,,a3. Assuming that VAA, VBB, q ~ ,  and q~BB 
are independent of concentration [31], the same po- 
tentials as those calculated for the pure metals are 
used, and q~,~ is given as the geometrical mean of 
• ~ and q~nB which is consistent with its interpretation 
in terms of hopping integrals. Thus, only VAB has to 
be fitted to the alloy properties. 

The functional form of VAB is the same as that used 
for the pure metals [31] for consistency. Thus, cubic 
splines are used as the form of the potentials, 

6 
VAA ( Rij) = ~,  a~AH(r~"  -- Rij)(r kAA -- Rii) 3 

k--1 

4 
(rPaA(Rij) = EAkAAH(R~-  R,j)(R'~-- R,j) 3 

k=l 

6 
VAB(R/i) = ~ a~mH(r'~B-- Rii)(r~B - Rii) 3 

k=l 

CAB(R,j) = [ qbAA(R,j) CI)BB(Rij)] 1/2 (9) 

where rk and Rk are cut-off distances chosen such that 
r a>rz> . . .> r6  and R a > R z > R 3 > R 4 ,  and H(x)  is the 
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Heaviside step function. The coefficients 
a ~  and A ~ '  are fitted to the equilibrium properties 
of the pure metal: lattice parameters, cohesive energy, 
elastic constants, the lower bound of the unrelaxed 
vacancy formation energy, and the stacking fault energy. 
The coefficients a ~  are fitted to the properties of the 
alloy: heat of formation, elastic constants (when avail- 
able), and stability of the equilibrium alloy crystal 
structure. 

For this study, the published potentials for Cu [32] 
and Ti [33] were not sufficient. A new Ti potential 
was derived to eliminate a negative "bump" in q)Tm 
which caused q)C~Ti to become imaginary at certain 
separations, and a stronger short-range repulsion was 
added to the Cu potential to stabilize the crystal struc- 
ture. In determining the alloy potential, a LMTO cal- 
culation was performed to obtain an approximate bulk 
modulus to help in the fitting. Table 1 summarizes the 
coefficients used to describe the potentials. These po- 
tentials have been used successfully in a study of 
vitrification [34], and further details and the devel- 
opment of these potentials can be found elsewhere 
[351. 

The simulation was carried out using an integration 
time step of 1.0×10 -15 s, and the temperature was 
maintained at 25 K by continuously rescaling the kinetic 
energy. The simulation procedure was conducted as 
follows. The perfect lattice was equilibrated at 25 K 
for 50 000 time steps (TSs), and then Frenkel pair 
defects were created every 100 TSs by randomly choosing 
an atom, removing it from the crystal, leaving behind 

T A B L E  1. P a r a m e t e r s  of  N-body  po ten t i a l s  for Cu, Ti, and  V ~  

Cu Ti  C u - T i  

a 1 61.73525861 - 57.099097 0.07354373 

a 2 - 108.1846788 80.735598 -- 0.65429048 

a 3 57.00053948 -- 21.761468 2.25129739 

a 4 - 12.88796578 - 10.396479 0.0 
a5 39.16381901 74.515028 0.0 

a 6 200.0 35.921024 0.0 

A 1 10.03718305 39.795927 
A2 17.06363299 --40.061305 

rl  1.225 1.22 4.95 

r z 1.202 1.20 3.90 
r3 1.154 1.12 3.30 

r 4 1.05 0.95 2.00 
rs 0.866 0.80 1.50 
r 6 0.740 0.707107 1.0 

Rl  1.225 1.22 
R 2 0.990 1.05 

a (/~) 3.615 4.173061 2.9438, 10.7861 

W e  use no rma l i zed  coefficients for the pure  me ta l s  and  abso lu te  
uni ts  of  ~ngst r6ms and e lec t ronvol t s  pe r  cubic  ~ngs t r6m for r AB 
and  a AB respectively.  

a vacancy, and then reinserting the atom at some random 
interstitial site (at least 1/~ away from any other atom). 
The atomic configurations were saved at regular intervals 
for later analysis. Three separate defect runs were 
carried out using this procedure. Two quench runs 
were also performed. The first was a single time step 
quench from an equilibrated liquid at 2500 K to a glass 
at 25 K followed by a 104 TS relaxation. The second 
quench was slower than the fast quench, and proceeded 
in steps of 200 K with a 105 TS hold at each step for 
equilibration. For all runs, including the quenches, the 
configurations were analyzed by examining the atomic 
projections, pair distribution function (PDF), volume, 
total energy, average shear stress and fourth-order 
cumulant. The quench runs were used as the glass 
standards for our investigations. 

3. Atomic position analysis 

In order to gain a greater insight into the effect the 
introduction of Frenkel defects has on the crystalline 
order in the alloy studied, a visual inspection of the 
atomic positions and the calculation of the PDF were 
conducted at various defect concentrations. Although 
these methods will not on their own give reliable 
evidence of amorphization, these methods are sensitive 
to the presence of crystallinity and can be used to 
assess the level of amorphization. The results in this 
section will be broken into two parts, and each will 
be preceded by a brief explanation of the technique 
used and the applicability of the results toward an 
overall understanding of defect-induced amorphization. 

It was decided that a reasonable means to inspect 
visually and to determine qualitatively the damage to 
the model crystal during the introduction of defects 
was by means of a projection of the atomic positions 
onto the (001) plane. This allows for a two-dimensional 
viewing of the MD box. If the crystalline lattice is 
present then the underlying symmetry will be seen as 
fringing in well-determined directions in the projection. 
Of course, this method cannot be used as independent 
evidence confirming the transition to the amorphous 
state, but it can be used to determine the minimum 
defect concentration where the system may be amor- 
phous. 

Figure 2 shows plots of the projections of all the 
atoms in the MD box onto the (001) plane at various 
defect concentrations. For no defects, Fig. 2(a), note 
that the atomic columns are well aligned. Since the 
simulation temperature is only 25 K, thermal vibrations 
play almost no part in the initial atomic positions. The 
most dominant fringing patterns, at this orientation, 
are the diagonal ( l l ) - type fringes. There are visible 
fringes in the (10) and (01) directions as well. At a 



D. T. Kulp et aL / Atomic level stress in defective intermetallics 421 

'o t o' ~ o '  ~ ' o '  / 'e J 'o Joe' • o ' ~ '  • ' e  ' et '~ t o '  
• • • • • • • • ~ 8~ • ~ • • o ~ e, 

• • • • • • • • • • • • ~ ~ e b ~ • * 

, I . . . .  I . . . .  I , , ®  I ~ ,  ~ , ® ,  ~ , ~  , ~ , I D  I , , 

(0) - 1 0  0 10 (b) - 1 0  0 10 

~ 0 0 , ~ - ~  ~.~. ~.,-.,.** 

~,, I- * *~ ~ ~ , . ,  , ~ _ 9  ° . * o % *  * ' , t o ¥  ~ * i  

~ • ~ o,,, ,~ ~ - ,~* ,e~ ~ L , ~ * * t ~  o , ~ o * ~ , , , ~ _ ,  *~,, , , * *  

,~r i ~ ,  ~ ,o~, ~ p , ,  , ,* I , , , '~  * ' i  ** ~i~* o"~, 9, ~ * i * - t  

( c )  - - 1 0  0 1 0  (d - - 1 0  0 7 0  

r, ( ~ )  r x (~,) 

' % ~ ,  ' , ~ . o  S a ~ , ' c ~  ' ~ o F ~ , ~ ,  ~ , * '  ' , ,oo' ' * , ' ' , ' - , * '  , * '  

~.ds~* ~ ~ ~ 0  -- ~*]% c ~ ,  "~*0  ~ ,  

0'* .**~'~ - * * *  * ~ u  "a~,  ~ ~ . ~ *~ o ' ~  ~ ' ~  ~ ¢ ~ 5  o *  *,# ~ '  ~, . ~ , ~  o ~ ~ , ~  * ~ t , ~ ,  e , ~ , ~ l ~  * 

(e) - 1 0  0 10 ( f )  - 1 0  0 10 

r x (,&) r x (-8,) 

Fig. 2. Projection of all atoms in the MD box onto the (00]) plane for different defect concentrations: (a) no defects; (b) 0.0194 
DPA; (c) 0 . ]74  DPA;  (d) 0.330 DPA;  (e)  0.417 DPA;  (f)  0.521 D P A .  

defec t  concen t r a t i on  of  0.0174 defec t s  p e r  a tom ( D P A ) ,  
local  d i s rup t ions  o f  the  la t t ice  conf igura t ion  can  be  
seen,  as well  as the  p r e s e n c e  of  in ters t i t ia l  a toms  (Fig. 

2(b)) .  Large  a reas  of  crystal  a re  still p resent ,  and  the 
a tomic  columns,  for  the  most  par t ,  a re  still intact .  The  
fr inges in all d i rec t ions  a re  still visible,  leading  one  to 
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assume that the system is still dominated by the crystal. 
As the defect concentration was increased by an order 
of magnitude to 0.174 DPA (see Fig. 2(c)), a large 
area of disrupted crystal on the right edge is seen, 
although large areas of crystalline order are still present. 
The damage seems to be particularly severe in the 
lower right-hand comer and continues, as a result of 
the periodic boundary conditions, in the upper right- 
hand corner. Although the atomic columns seem to be 
disrupted in this region, fringing in all directions is still 
visible. Up to 0.2 DPA, the fringes associated with the 
crystal are the dominant features, and indicate that 
the properties of the system should still be dominated 
by the crystalline order. 

Increasing the defect concentration to nearly one- 
third (0.330 DPA) leads to what looks like a completely 
disordered system with widely scattered atomic positions 
(Fig. 2(d)). The atomic columns aligned with the c axis, 
which corresponds to the orientation of the crystal 
motif, have been nearly eliminated. Examination of the 
fringes within the plane of the paper, however, shows 
that the (10) and (01) fringes are still present, but 
nearly lost. The (11) fringes are still relatively strong, 
indicating the presence of some ordering. One should 
note that there are no perceptible regions where all 
fringing has been lost. Regions where ordering in some 
directions have been lost maintain ordering in the other 
directions. This indicates that there is still an underlying 
crystalline symmetry. Figures 2(e) and 2(0 (0.417 DPA 
and 0.521 DPA respectively) show the concentration 
where crystallinity is seemingly lost, In Fig. 2(e), ( l l ) -  
type lattice fringes are barely perceptible, and one 
might argue the presence of a few (10) fringes. This 
indicates that it may not be reasonable to consider the 
system amorphous because of the presence of the crystal- 
like pattern, even though it seems to be a minority 
phase. For the 0.521 DPA case (Fig. 2(f)), there is a 
complete loss of fringing, as far as can be determined 
by eye. From these results one could assume that 
amorphization did not occur at defect concentrations 
below 0.417 DPA. 

To augment the visual inspection of the atom pro- 
jections, a series of PDFs were calculated to verify the 
presence of crystal. The PDF analysis produces more 
quantitative evidence for residual crystallinity in de- 
fective systems. This method, like the projection method, 
is sensitive to the presence of crystal through the 
presence of peaks which do not correspond to pair 
correlations present in the glass. The main advantage 
of calculating PDFs is that.they represent experimentally 
verifiable results and can be compared with experi- 
mentally determined PDFs. This method, however, is 
not reliable in determining when a system is completely 
amorphous. It is difficult to determine the exact cir- 
cumstances where all crystalline peaks disappear, so it 

t O  

d 

I I 

0 

0 , , , ~ I , , , , I 

0 5 10 

R (.~) 

Fig. 3. Simulated atomic PDF of CuTi2 for different defect 
concentrations: curve a, 0.330 DPA; curve b, 0.417 DPA; curve 
c, 0.521 DPA; curve d, the glass. 

remains a good indicator for determining whether a 
system is not amorphous rather than whether it is. One 
should also realize that the PDF is a spherical average 
so all orientational information is lost. 

The PDFs in this study are calculated using the 
following formula: 

PDF=p(r)=n(r)/4~rr 2 8r (10) 

where the PDF p(r) is defined here as the ratio of the 
number n(r) of atom pair separations of distance r to 
the volume of the shell with radius r and thickness &. 
Curves a--c in Fig. 3 correspond to the defect concen- 
trations of the projections of Figs. 2(d)-2(f) respectively 
and are used to verify the presence of crystal. Figure 
3, curve d, is the PDF calculated from the fast quench 
run, and is used as the standard for the glass. Figure 
3, curve a, 0.330 DPA, has features not present in Fig. 
3, curve d, the glass. The small peak at 4 / ~  and the 
split third nearest neighbor (3NN) (6.0-8.0 /~) peak 
are indicative of partially crystalline CuTi2. In Fig. 3, 
curve b, the 0.417 DPA system still shows some signs 
of crystallinity as well. The small peak at 4/~ is barely 
visible and the multiple peak at the 3NN position is 
still present. In Fig. 3, curve c, the PDF looks very 
similar to that of a glass (Fig. 3, curve d). The 3NN 
and 4NN peaks are definitely single peaked, and there 
is no sign of the small peak at 4 /~. These results 
confirm our analysis of the atom projections. This 
evidence corroborates our interpretation that the visible 
fringes in the atom projections correspond to the pres- 
ence of crystallinity. From the PDF data, it can be 
determined that amorphization did not occur at defect 
concentrations below 0.417 DPA as in the case with 
the atom projections. 
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4. Volume and total energy v s  defects per atom 

Figure 4 is a plot of the dependence of the atomic 
volume on the defect concentration. The figure rep- 
resents three different runs as described earlier. For 
less than 0.065 DPA, the volume increases linearly with 
increasing defect concentration. This linear increase 
represents the elastic expansion of the lattice due to 
the insertion of the interstitials. When the defect content 
becomes high enough, recombination of interstitials and 
vacancies begins to occur, and thus the volume increases 
less rapidly. The volume eventually saturates when the 
defect concentration reaches 0.20 DPA with a volume 
near 16.680/~3 atom-1. This saturation indicates that 
the recombination occurs within the time scale of defect 
production. Although the atomic volume has saturated, 
except for a small peak in run 3, the system is still 
mostly crystalline at 0.20 DPA according to the atom 
projection and PDF data of Section 3, which reveals 
partial crystallinity at defect concentrations below 0.417 
DPA. This plateau represents an increase of 5.50% 
over the equilibrium volume at 25 K, which is a re- 
markably large amount considering that the volume of 
the glass usually exceeds that of the crystal by roughly 
1.0%-3.0%. The two horizontal lines marked a and b 
represent the volume of two glasses formed at different 
cooling rates, as described in Section 2. The data cross 
the slow quench line b around 0.022 DPA and the fast 
quench line a near 0.09 DPA, which is well within the 
crystalline region as determined from the data of Section 
3. The filled circles in Fig. 4 represent the volume after 
relaxation over 105 TSs. These runs were conducted 
at defect concentrations of 0.174, 0.260, 0.347, 0.451, 
0.521, and 0.694 DPA. In all cases, there were significant 
drops in volume, after relaxation, ranging from 1.5% 
to 4.0%. Using the PDFs (Fig. 3), it was judged that 

the two samples at 0.521 and 0.694 DPA were amor- 
phous, and the other four were still crystalline. The 
volumes reported are stable to within 0.7%, which 
correspond to errors of less than 0.115 A 3 atom -1. 

As noted earlier, it has been proposed that, if the 
volume expansion induced by defect production causes 
the volume of the defective crystal to exceed the volume 
of the glass, then amorphization will occur as a result 
of mechanical instability [3]. The results above show 
that this hypothesis is not valid for CuTi2. Moreover, 
the volume of the glass is very dependent on the quench 
rate as seen in Fig. 4. In fact, the volume of the slow- 
quenched glass is closer to the volume of the non- 
defective crystal than to that of the defective crystal 
or even the fast-quenched glass. The large drops in 
atomic volume during relaxation indicate that the atomic 
volume is also very dependent on the relaxation of the 
defective system. The value of the atomic volume is 
not unique to the glassy state, since the slow-quenched 
and 0.694 DPA relaxed glasses have the same volume 
as the partially crystalline system, unrelaxed, at 0.022 
DPA. Thus, the atomic volume is not a useful parameter 
for amorphization. 

Figure 5, total energy per atom v s .  defect concen- 
tration, shows similar properties to Fig. 4. In this case, 
the total energy reaches a plateau near a value of - 4.3 
eV atom -I at 0.310 DPA. The atomic structure at this 
defect concentration can be characterized by Fig. 2(d), 
which still has strong (11) fringes, and the partially 
crystalline PDF of Fig. 3, curve a. Again the horizontal 
lines marked a and b represent the fast- and slow- 
quenched glass respectively. In this case the data cross 
the lines at higher defect concentrations. The slow 
quench is crossed at 0.095 DPA and the fast quench 
is crossed at 0.150 DPA. For both cases the system is 
still crystalline at the cross over points. As in the case 

E 
1 7 . 0  . . . .  4 .2  . . . . . . . . . .  , . • • , . - • 

1 6 . 6  -4.3 

gg  
IJJ 1 6 . 0  " m o b  RUN e 1 IJ.I RUN • I 

~ ' -  Z ....... ~ ...... RUN ° 2  
"-~ 15.fl~ ....... b ...... RUN d'2 ILl -4 .5  
.--I ....... Q ...... RUN e 3  ....... [ ]  ...... RUN # 3  

C3 1 5 . 6  - J  • R E L A X A T I O N  
~>  • R E L A X A T I O N  

1 5 . 4  . . . . . . . . . .  I-- -4 .6  . . . . . . . . . . . . . . . . . . .  
0.0  0.2 0.4 0.6 0.8 1 .0  

DEFECTS (dpa) 
Fig.  4. D e p e n d e n c e  o f  v o l u m e  p e r  a t o m  o n  de fec t  c o n c e n t r a t i o n  
fo r  a l l  t h r e e  runs .  T h e  l i ne s  r e p r e s e n t  t he  v o l u m e s  o f  the  fas t -  
( l ine  a)  a n d  s low-  ( l i ne  b)  q u e n c h e d  g las ses ,  a n d  t he  a r r o w s  
s h o w  the  d r o p  in v o l u m e  a f t e r  r e l a x a t i o n .  
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s h o w  the  d r o p  in e n e r g y  a f t e r  r e l a x a t i o n .  
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of atomic volume vs. DPA, the total energy per atom 
is very dependent on the quench rate. There is a huge 
difference between the energies of the fast-quenched o 
glass and the plateau, close to 0.5 eV atom-1, and the 
difference between the fast- and slow-quenched glasses 
is large as well. Thus the energy cannot be used as 
the parameter to judge amorphization. During relax- 
ation, the energy exhibits significant drops in energy, o 
as much as 2.0%. As in the case of the atomic volume, 
these data suggest that there is no unique energy which 
describes the glassy state. The statistical errors in total 
energy are within 3/N which is 0.26% and corresponds 
to errors of less than 0.011 eV atom -1. 

The defect concentration dependences of the atomic o 
volume and the total energy per atom show that the 
thermodynamic properties are not useful as criteria for 
amorphization. In both cases the properties surpass 
the values of the quenched glass and reach a plateau 
well before complete amorphization. Relaxation of the oo 
glass results in decreases in both the atomic volume 
and the total energy to levels equal to that of the 
unrelaxed partially crystalline state. This indicates that 
knowledge of the relaxation history of the system is 
necessary, and that no value of these properties is 
unique to the glass. Thus it is necessary to find a more 

o 
reliable criterion for amorphization. We found that the ~o 
atomic level stresses provide a reliable measure of 
amorphization and are thus a viable criterion. 

5. Atomic level shear stress analysis 0 

I I 

(0) 

I I 

0 0.02 0.04 0.06 0.08 
"7- i 

Figure 6 is the distribution of the shear stresses in 
the CuTi2 alloy in three different states. The horizontal 
axis, in all three cases, is the value of the von Mises 
shear stress. The first, Fig. 6(a), is the distribution in 
the non-defective crystal at 25 K. It should be noted 
that the distribution is bimodal, with each value sharply 
defined and representing one of the two atom types 
present in the system. 

O Figure 6(b) shows the distribution in a defective ~- 
crystal at only 0.01 DPA. The sharp peaks from the 
non-defective case have been reduced by a factor of 
7 and largely broadened. This indicates how sensitive 
the shear distribution is to changes in the structure of 
the system. The distribution in a quenched glass is 
shown in Fig. 6(c). This distribution takes the form of 
a five-dimensional gaussian which is expected for me- 
tallic glasses [11]. The average value of the atomic o 
shear stress distribution is simply the mean and, since 0 
~- is defined as the r.m.s, of the independent shear 
stress, the fourth-order cumulant (~-4)c would then be 
an expression of the shape of the distribution. By looking 
at these two values, the transition from the partially 
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Fig. 6. H i s t o g r a m s  s h o w i n g  the  d i s t r ibu t ion  o f  the  a tomic  level 
s h e a r  s t ress  in (a)  the  pe r f ec t  crystal ,  (b)  a defect ive crystal at  
0.01 D P A ,  and  (c) the  glass.  
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crystalline state to the amorphous state should be well 
defined if the shear stress distribution is universal for 
all glasses with the same composition. 

Figure 7 is a plot of the dependence of the average 
shear stress on the defect concentration. For the purpose 
of normalization, the shear stress is divided by twice 
the shear modulus G (0.4973 eV/~-3), averaged over 
the last 100 steps, to obtain the average local shear 
strain. The curves reach a plateau around 0.50 DPA 
at a shear strain value of 0.065 which is an increase 
of 124% over the crystal value, which mirrors our earlier 
stipulation of the sensitivity of ~- to changes in the 
atomic environment. It should be noted that the atom 
projection inspection (Fig. 2) and the PDFs (Fig. 3) 
indicate that the CA transition takes place around these 
defect concentrations. Also, experiments using 2 MeV 
H ÷ at 98 K on CuTi2 suggest that complete amor- 
phization occurs between 0.43 and 0.65 DPA [12]. The 
saturation value of the shear strain, 0.065, is very close 
to the values from the quench runs, which are 0.0638 
for line a and 0.0651 for line b. The changes in these 
values due to relaxation, at 0.521 and 0.694 DPA, are 
so small that they do not show at this scale. For defect 
concentrations under 0.451 DPA, there are significant 
drops in the average shear strain away from the glass 
levels. Thus (~-) seems to be independent of relaxation 
in the glass, and dependent on relaxation in the crystal. 
This is different from the large changes seen in the 
atomic volume and total energy. This indicates that 
the average shear stress is nearly independent of the 
processing history and is likely to be an intrinsic property 
of the glass. 

In Fig. 8, the fourth-order cumulant, which is divided 
b y  ( ( " r 2 ) f )  2 (which is the same as (('rz)f) 2) averaged 
over the last 100 steps for the purpose of normalization, 
is plotted as a function of defect concentration. The 
plot shows that ( ' r 4 ) c / ( T 2 )  2 decreases linearly with 
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increasing defect concentration up to a concentration 
of about 0.50 DPA, where the shape of the shear stress 
distribution becomes independent of further damage. 
This saturation is also an indication of the CA transition. 
The value of ( " F 4 ) C / ( ( ~ 2 ) 0  2 agrees within the noise with 
those for the quenched glasses as shown in Fig. 8. The 
value of (r4)c/(~'2)2=(~-4)/(~-2)2-3 can be approxi- 
mated if the distribution of ? is assumed to take the 
form of a five-dimensional gaussian [8, 11] and that 
the independent shear stress components are approx- 
imately equal. The calculated normalized fourth-order 
cumulant is -2.52. Examination of Fig. 8 shows that 
the saturation value is close to this approximation. As 
in the case of (~-), the fourth-order cumulant in the 
glass exhibits virtually no change during relaxation, 
while in the partially crystalline system there is a 
dependence on relaxation. This indicates that this quan- 
tity is also a property of the glass which is independent 
of processing. 

Thus both the average shear stress and the fourth- 
order cumulant become independent of the defect 
concentration beyond about 0.5 DPA. This indicates 
that the magnitude and distribution of the atomic level 
shear stresses have reached the point of saturation 
there, and any additional defects become immediately 
relaxed. Such a state must be the glassy state, since a 
vacancy and an interstitial defect are known to be 
unstable in a metallic glass [36], and indeed the PDF 
indicates a loss of crystallinity. 

6. Conclusion 

Several recent computer simulation results [1, 2] on 
defect-induced amorphization have indicated that the 
pertinent parameters in studying the CA transformation 
are the volume and total energy as functions of the 
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defect concentration. Through arguments that the CA 
transformation is similar to melting, the volume and 
total energy are signs of mechanical instability within 
the crystal and should lead to the collapse of the 
crystalline lattice into a glassy state. This paper has 
shown that this is not the case. At defect concentrations 
where both the atomic volume and the total energy 
have saturated, the atom projections and PDFs clearly 
show signs of crystallinity, indicating that the crystal 
is still stable. The thermodynamic properties do not 
give a unique value for the glass state; rather, they 
change as the system relaxes to the local minimum. 
The dependence of the thermodynamic properties on 
how the glass is formed and how it is relaxed indicates 
a dependence on the history of the glass, and thus 
they cannot be used generally to describe amorphization. 
On the contrary, the average atomic shear strain (~-)/ 
2 G f  and the fourth-order cumulant ("/'4)c/((~2)f)2 in 
the glass have been shown to be independent of the 
history of the glass. Both parameters reached saturation 
at a value equal to those of two glasses quenched at 
different rates, and neither changed as the glass was 
relaxed, while changes are seen after relaxation at 
defect concentrations below the critical value. Also, 
the saturation value of the fourth-order cumulant agreed 
fairly well with an analytic approximation. The con- 
centration where ( ' r ) / 2 G f  and (r')c/((~'2)f) 2 saturate, 
0.50 DPA, corresponds to the concentration where 
crystalline order disappears in both the atom projection 
and the PDFs. 

The present work has shown that the atomic level 
shear stresses are effective parameters to describe amor- 
phization. In particular, the radiation damage threshold 
for complete amorphization can be determined from 
the magnitude and distribution of the shear stresses. 
The value of the average shear strain and the distribution 
of the shear stress were found to be unique to the 
glass, and can be used to differentiate between the 
glass and the crystal. In addition, the atomic level 
stresses have been successfully used in predicting the 
composition limit of metallic alloys for glass formation 
by quenching [37] as well as the glass transition tem- 
perature [8, 11]. Also, Visscher and Logan [9] found 
persistent fluctuations of some non-zero k components 
of the stress near Tg in their simulations of the glass 
transition. This suggests a universality of the stress 
criterion in amorphization phenomena in general. The 
glassy state appears to be characterized by a unique 
distribution of the local shear stresses, with its average 
magnitude being dependent only on composition [11]. 
Excess stresses beyond this state will lead to liquid- 
like behavior, and at low temperatures they will relax 
away. On the contrary, stresses cannot be reduced 
below this state without resulting in partial crystalli- 
zation. Thus the local stress is an excellent measure 

of amorphousness and can be used to predict the 
conditions necessary for amorphization. 
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